
Journal of Sound and <ibration (2000) 232(2), 431}447
doi:10.1006/jsvi.1999.2749, available online at http://www.idealibrary.com on

0

THE SOUND RADIATION EFFICIENCY OF FINITE
LENGTH ACOUSTICALLY THICK CIRCULAR
CYLINDRICAL SHELLS UNDER MECHANICAL

EXCITATION I: THEORETICAL ANALYSIS

C. WANG AND J. C. S LAI

Acoustics and <ibration ;nit, ;niversity College, ¹he ;niversity of New South =ales,
Australian Defence Force Academy, Canberra, AC¹ 2600, Australia

(Received 14 January 1999, and in ,nal form 12 October 1999)

The acoustic radiation from circular cylindrical shells is of fundamental and applied
interest primarily because cylindrical shells are widely used in industry, and because their
acoustic behaviour is di!erent from that of beams and plates due to curvature e!ects. In
previous studies of the subject, cylindrical shells have been categorized into acoustically thin
and acoustically thick shells in terms of the ratio between the ring frequency f

r
and the

critical frequency f
C
, i.e., f

r
/ f

C
(1 for acoustically thin shells, and f

r
/ f

C
'1 for acoustically

thick shells. For acoustically thin shells, it has been found by statistical methods that the
radiation e$ciency has a peak at the ring frequency. Above the ring frequency, the shells
behave like #at plates. For acoustically thick shells, especially with "nite length, however, the
behavior is not so clear. From the analysis in the wavenumber domain, a formula for
calculating the modal radiation e$ciency of "nite length circular cylindrical shells
(immersed in light #uid) under mechanical excitation is obtained analytically. Based on this
method, the modal-averaged sound radiation e$ciencies of acoustically thick circular
cylindrical shells are calculated. It is found that unlike acoustically thin shells, the radiation
e$ciencies of acoustically thick cylindrical shells very much depend on the acoustic
behaviour of each individual vibration mode, and thus on the geometries and the boundary
conditions. Results obtained by acoustic boundary element calculations and experiments
verify these conclusions.

( 2000 Academic Press
1. INTRODUCTION

Plane, spherical and cylindrical sources are generally treated as basic sound sources because
of their simple geometries and their many practical applications. However, the cylindrical
source has usually been treated by assuming in"nite length because the corresponding
solution could be expressed analytically by a series of cylindrical waves [1]. Obviously, in
practice, because most circular cylindrical structures are "nite in length, and the end e!ects
become more important as the length becomes shorter, the results obtained by using an
in"nite length model could be in severe error. Acoustically thick shells (of which the critical
frequency is lower than the ring frequency) are very common in industries; for instance,
pipes of relatively small diameters and the casing of some electric machines such as
motors/generators.

The acoustic properties of "nite length cylindrical shells have been studied over the years,
and various aspects of the acoustic radiation properties have been published. According to
Fyfe and Ismail [2], the techniques used in the literature could be categorized into two
groups, namely statistical approach and deterministic analysis.
022-460X/00/170431#17 $35.00/0 ( 2000 Academic Press
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Statistical approach [3, 4] is employed when the resonant frequencies are densely packed
in the frequency band, and the acoustic properties are lumped together so that individual
frequency analysis becomes impractical. Obviously, this method is only valid at high
frequencies. The most successful work on a cylindrical source was carried out by Szechenyi
[4], who developed a set of general, but approximate equations for predicting the radiation
e$ciencies of cylindrical shells having large length to thickness and radius to thickness
ratios within a given frequency bandwidth. These results have been veri"ed by experiments
except for low frequencies [4].

In deterministic analysis, individual vibration velocity distributions which could be a!ected
by the geometry and the boundary conditions of a cylindrical shell at each frequency are
considered. Various studies using deterministic analysis have been reported. For example,
Bordoni and Gross [5] calculated the sound power radiated from a rigid cylinder with one
oscillating end surface; Williams [6] employed an approximate series method to analyze the
radiation of "nite length cylinders with a uniform radial vibration velocity pro"le; Daw and
Perreira [7] studied the axial oscillations of "nite length cylinders; Richards [8] concentrated
on the radiation e$ciency of in"nite beam-like cylinders in #exural vibration; Stepanishen
[9] and Zhu [10] discussed the radiation impedance and &&relative sound intensities'' of
di!erent vibration modes of an in"nite cylinder with "nite length vibration distribution
respectively. Furthermore, by taking into account the reaction of the #uid inside
a cylindrical shell, Stepanishen [11] studied the coupling between the acoustic modes and
the structural vibration modes; Holmer and Heymann [12] investigated the sound
transmission through pipe walls; and Laulagnet and Guyader [13] analyzed the acoustic
radiation of a cylindrical shell immersed in light and heavy #uids. Nevertheless, the acoustic
radiation of "nite length acoustically thick circular cylindrical shells under mechanical
excitation is not clearly understood, even when the ambient medium is light.

Due to the wide application of these shell structures, very often, the acoustic radiation
from such structural elements is of great interest. However, since the modal densities of
acoustically thick shells are normally low, and the corresponding ring frequencies are high,
Szechenyi's statistical results are not applicable. Actually at low frequencies, because the
individual behavior of each mode is becoming important, the corresponding modal-
averaged radiation e$ciency could have di!erent characteristics from that at high
frequencies. Therefore, a deterministic analysis of such problems would be bene"cial.

The objective of this study was to conduct a detailed acoustical analysis of the sound
power produced by "nite length acoustically thick circular cylindrical shells under
mechanical excitation, for which the modal densities are not high enough to apply statistical
analysis. A formula for calculating the modal radiation e$ciencies of the cylindrical shell
loaded with light #uid is derived. The e!ects of the geometries and the boundary conditions
on the modal-averaged radiation e$ciency are discussed. These analytical results are
compared with those obtained by acoustic boundary element calculations and experiments.

2. A REVIEW OF PREVIOUS WORK

In order to decide how to carry out the analysis, it is necessary to summarize the previous
relevant work on cylindrical shells [4, 12}14] in detail.

2.1. PREVIOUS WORK

As pointed out by Wang and Lai [15], the ring frequency ( f
r
) is an important parameter

used to indicate the frequency range for which curvature e!ects are important. The ring
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frequency is de"ned as the frequency when the wavelength of extensional waves in the shell
is equal to the shell circumference:

f
r
"

1

2naS
E

o
, (1)

where a is the radius of the cylindrical shell, o is the density of the material, and E is Young's
modulus. For acoustic purpose, normally another important frequency should be de"ned,
namely the critical frequency f

c
. The critical frequency is the frequency at which the acoustic

wavelength in the medium is the same as that in the structure. For #at plates, of which the
e!ects of the critical frequency have been discussed thoroughly [14], this frequency has been
shown to be an inherent property of the structure:

f
c
"

c2
0

2nhS
12o(1!k2 )

E
, (2)

where c
0

is the sound speed in the #uid medium such as air, h is the thickness of the plate,
and k is the Poisson ratio. Based on these two frequencies, cylindrical shells can be classi"ed
into acoustically thin shells for f

r
/ f

c
(1, and acoustically thick shells for f

r
/ f

c
'1 [12]. It

should be emphasized that a shell can be geometrically thin (thickness h@ radius a) but still
acoustically thick. For example, for an aluminium (Young's modulus, E"7)1]1010N/m2,
density, o"2700 kg/m3 and the Poisson ratio, k"0)33) or steel (E"2)60]1010N/m2,
o"7850kg/m3 and k"0)3) circular cylindrical shell, by using equations (1) and (2), we
obtain f

r
/ f

c
K67 h/a. If a/h is smaller than 67, the shell would be considered to be

acoustically thick but still geometrically thin.
For acoustically thin cylindrical shells, because of the high modal density, statistical

analysis can be employed [3, 4]. According to Szechenyi [4], when f
c
'f

r
, the radiation

e$ciency of cylindrical shells has three distinguished features corresponding to three
frequency ranges. Below the ring frequency, the radiation e$ciency increases at a rate of
3}6dB per octave to a maximum at the ring frequency. Above the ring frequency, the
curvature e!ects are no longer important and the cylindrical shells vibrate like #at plates.
Therefore in the frequency range between f

r
and f

c
, the radiation e$ciency would "rst

decrease then increase as the frequency approaches f
c

in a manner similar to #at-plate
radiation. Above the critical frequency, the radiation e$ciency then maintains a value of
unity. In the analysis, Szechenyi also found that below the ring frequency, the modal-
averaged radiation e$ciency is a function of h/a, irrespective of the length and thus the
boundary conditions. Moreover, the in#uence of the length and the boundary conditions
for acoustically thin shells is only observed in the region f

r
(f(f

c
in the same manner as

#at-plate radiation. In practice, a typical example of acoustically thin shells is an airplane
fuselage.

However, most practical cylindrical shells encountered in industries are acoustically thick
for which Szechenyi's results [4] cannot be applied. Currently, for acoustically thick
cylindrical shells, the physical signi"cance of f

c
is not clear because curvature e!ects would

play an important role in determining the #exural wave speed and the acoustic radiation
behavior. By analyzing the sound transmission through pipe walls, it has been shown [12]
that the radiation e$ciency of an acoustically thick cylindrical shell under the acoustic
excitation normally increases smoothly with frequency until it reaches a constant value of
about unity at high frequencies, and the coupling between the acoustic modes and the
structural modes has to be considered. However, as pointed out by Fahy [14], the acoustic
behavior of acoustically thick shells is strongly in#uenced by the nature and the type of the
excitation. For example, the mechanical excitation of pipes can produce quite di!erent
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radiation e$ciencies from those associated with excitation by #uid #ow or sound waves in
the internal #uid. The acoustic radiation of a cylindrical shell subjected to a point force
excitation was studied by Laulagnet and Guyader [13] theoretically. They found that for
light #uid (in which the ratio of its speci"c impedance to the angular frequency is negligible
compared to the shell mass per unit area), the coupling between the acoustic modes and the
structural modes is negligible. However, their cylindrical shell was acoustically thin, and no
experimental results were presented.

In our preliminary study [16], the acoustic behavior of an acoustically thick steel
cylindrical shell, 200mm long, 1)6mm thick and 63)5 mm in radius, under mechanical point
excitation has been investigated. The critical and ring frequencies of this shell are 7392 and
13 190Hz respectively. By using an acoustic boundary element code, SYSNOISE version
5)2 [17] on a SUN SPARC workstation, the radiation e$ciencies of the cylindrical shell
with three di!erent boundary conditions, namely simply supported, free and clamped at
both ends, have been calculated from 300Hz to 8kHz with a step of 100Hz. The number of
nodes and elements of the BEM model is 2480 and 2400 respectively. As a result, the
number of elements per acoustic wavelength below 8 kHz is greater than 6. The analysis
option used in the calculation was BEM indirect coupled analysis [17]. The results are
shown in Figure 1(a). It can be seen that depending on the boundary conditions, the
radiation e$ciency reaches unity at a frequency much lower than the critical frequency f

c
.

On the other hand, Szechenyi's results for acoustically thin shells are independent of the
boundary conditions. Although Szechenyi's results display a general trend similar to the
BEM results, there are signi"cant quantitative di!erences. Another two steel cylindrical
shells, each 3mm thick, and 19)5mm in radius, but 20 and 60mm in length respectively,
were also examined with free-free boundary condition under point excitation. The critical
and the ring frequencies for these two shells are 4036Hz and 41)9 kHz respectively. The
number of elements for the two models is 1000 and 3000 respectively. The number of
elements per acoustic wavelength below 5kHz is greater than 6 for both models. The results
obtained by using the same option in SYSNOISE are shown in Figure 1(b). It can be clearly
seen that for a thick shell, di!erent lengths result in signi"cant di!erences in acoustic
radiation. In contrast, Szechenyi's results which are only valid for acoustically thin shells are
independent of the length (Figure 1(b)). These preliminary results thus indicate that
acoustically thick shells do warrant a more detailed study.

2.2. QUALITATIVE ANALYSIS

Since the radiation properties of acoustically thick cylindrical shells are strongly
in#uenced by the geometries and the boundary conditions, statistical analysis cannot be
used. Thus, the e!ects of each vibration mode on the acoustic radiation have to be studied.
The model used here is a steel circular cylindrical shell, 200 mm long, 1)6mm thick and
63)5mm in radius.

It has been shown by Wang and Lai [15] that the relationships between natural
frequencies and wavenumbers of "nite length cylindrical shells are independent of the
boundary conditions. In order to simplify the discussions, an approximate solution to the
exact relationship as a result of neglecting in-plane defection [18] is used here:
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where D"Eh3/12(1!k2), K"Eh/(1!k2) , u
mn

is the natural frequency of a circular
cylindrical shell for mode (m, n), k

zm
and khn ("n/a) are the structural wavenumbers in the



Figure 1. Modal averaged radiation e$ciency of acoustically thick cylindrical shells calculated by BEM. (a)
a"63)5mm, h"1)6 mm, l"200 mm;** simply supported; ) ) ) ) ) ) ) ) free}free; - - - - - clamped}clamped; - - - -
Szechenyi's result. (b) a"19)5mm, h"3mm; L equation (22), l"20mm; n equation (22),
l"60mm;** BEM results, l"20 mm; ) ) ) ) ) ) ) BEM results, l"60 mm; - - - - - Szechenyi's result.
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axial and circumferential directions respectively. For di!erent boundary conditions,
k
zm

takes di!erent forms as discussed in reference [15].
In Figure 2(a), based on equation (3), a series of structural wavenumber curves associated

with di!erent frequencies are presented. It can be seen that, unlike #at plates, the vibration
modes of shells having the same natural frequencies can have di!erent structural wave
numbers k ; for instance, the wavenumbers at 13kHz in Figure 2(a), where k2"k2 #k2 .
s s zm hn



Figure 2. Wavenumber diagram for a cylindrical shell: - - - - -, acoustic wavenumber;**, structural wavenum-
ber; khn , circumferential structural wavenumber; k

zm
, axial structural wavenumber; k, acoustic wavenumber.
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Only above the ring frequency of the cylindrical shell would these wavenumbers approach
the same value. This phenomenon is due to the curvature e!ects which modify the wave
speed in the axial direction below the ring frequency. Thus, the e!ect of curvature on
acoustic radiation of "nite length cylindrical shells has to be examined.
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In order to illustrate the curvature e!ects, three structural wavenumber curves and three
corresponding acoustic wavenumber curves are plotted in Figure 2(b). From the acoustics
point of view [14], the vibration modes could be categorized into acoustically fast modes
and acoustically slow modes, sometimes called supersonic and subsonic modes.
Acoustically fast modes refer to those of which the structural wavenumbers are smaller
than the corresponding acoustic wavenumbers, and the modal radiation e$ciencies
[14] of these modes are unity. Acoustically slow modes are ine$cient in acoustic
radiation because structural wavenumbers are greater than the corresponding acoustic
wavenumbers, which would lead to some cancellation in the radiation. For isotropic and
#at plates [14, 18], the unique demarcation for these two cases is the critical frequency.
However, for cylindrical shells, it can be seen from Figure 2(b) that, below the critical
frequency, the structural wavenumber curve always intersects the acoustic wavenumber
curve, such as point A, at a given frequency. This point of intersection in the wavenumber
domain changes as the frequency changes. When the frequency is the critical frequency,
the curves are tangent to each other as shown by Point B in Figure 2(b). When the
frequency is greater than the critical frequency, the two curves no longer meet. This
result indicates that at any frequencies below the critical frequency, acoustically fast
modes and slow modes exist simultaneously, and the demarcation depends on the
frequency. Therefore, for cylindrical shells, it is impossible to de"ne a unique &&critical
frequency'' for describing the acoustic properties as for #at plates. Figure 2(b) shows that the
critical frequency de"ned for plates indicates the condition for all possible vibration modes
of cylindrical shells to be supersonic. Thus, the radiation e$ciency of cylindrical shells
should be unity above the critical frequency because the modal radiation e$ciencies of all
modes are unity.

Below the critical frequency, since both supersonic and subsonic modes exist
simultaneously, the overall radiation e$ciency depends on the number and the types
of modes dominating the vibration response. For example, if the mode is supersonic,
the modal radiation e$ciency is unity, and if it is subsonic, the modal radiation e$ciency
is less than one. Three points associated with the determination of the radiation
e$ciency below the critical frequency can be concluded here. Firstly, the demarcation
for each mode, i.e., whether the mode is supersonic or not, has to be determined.
Secondly, the modal-averaged radiation e$ciency could be unity if supersonic modes
dominate the response. Thirdly, for a given cylindrical shell, the modal-averaged
radiation e$ciency [14] is dependent on the excitation and boundary conditions
because the excitation determines the modal amplitude and any changes of boundary
conditions could make some supersonic modes subsonic or vice versa. By comparisons,
for #at plates, all the modes occurring below the critical frequency are always subsonic
and all those above the critical frequency are always supersonic [14, 18]. Therefore,
it can be expected that the variation of the modal-averaged radiation e$ciency of
cylindrical shells due to the change of boundary conditions could be larger than that for
#at plates.

In order to explain why the radiation e$ciency reaches unity well below the critical
frequency as shown in Figure 1(a), the model presented above will be further examined here.
The natural frequencies of that cylindrical shell can be calculated according to the method
described in reference [15]. Corresponding to each natural frequency, there must exist
a structural wavenumber curve to which the vibration mode belongs and an acoustic
wavenumber curve of the same frequency, as shown in Figure 2(b). Note that at each point
of the intersection of the two curves, the structural wavenumber is equal to the acoustic
wavenumber. Hence one can compare the structural wavenumber of this mode k

S
with the

acoustic wavenumber k to determine whether this mode is supersonic or not. For this



Figure 3. The index D¸ of each vibration mode of the cylindrical shell: #, simply supported; L, free}free; K,
clamped}clamped.
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purpose, an index can be de"ned as

D¸(m, n)"k!k
s
"

u
mn
c

!Jk2
zm
#k2hn . (4)

Obviously, this index depends on the natural frequency and the structural wavenumbers of
the vibration mode (m, n). If D¸*0, which means that the acoustic wavenumber is greater
than the structural wavenumber, the mode is supersonic, and if D¸(0, the mode is
subsonic. In Figure 3, D¸ of all the vibration modes associated with three di!erent
boundary conditions (simply supported, free and clamped) is plotted against their own
natural frequencies. It can be seen that the critical frequency f

c
of the equivalent #at plate

indicates whether all the vibration modes of the cylindrical shell are supersonic or not.
Below the critical frequency, corresponding to each supersonic mode in Figure 3, there is
a peak in the modal-averaged radiation e$ciency in Figure 1(a); for instance, the peaks
around 2300Hz for simply supported and clamped conditions, 2800 Hz for free conditions,
etc. According to Figure 3, although subsonic modes exist below the critical frequency, the
number of supersonic modes increases as the frequency increases so that the modal-
averaged radiation e$ciency could reach unity at a frequency much lower than the critical
frequency, as shown in Figure 1(a).

3. THEORETICAL ANALYSIS

3.1. MODAL RADIATION EFFICIENCY

The determination of the radiation e$ciency of structures analytically has always been
a subject of interest to acousticians. Normally, structures with in"nite dimensions, such as
in"nite plates and in"nite length cylindrical shells [14, 18], could have simple and closed-
form solutions because only approaching waves both in the structure and in the acoustic



Figure 4. The "nite length cylindrical shell model.
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"eld need to be considered so that the coupling between the structure and the acoustic "eld
can be easily handled. For structures with "nite dimensions, one has to use an approximate
series method to approach the exact solution [6], or alternatively to choose a theoretical
model which re#ects the nature of the practical structure [8}13]. For the latter approach,
the accuracy strongly depends on the model selected.

In order to examine the e!ects of "nite length, an in"nite length circular cylindrical shell
but with "nite length vibration distribution, as shown in Figure 4, is used. This model has
been employed by many researchers [9}13] in their studies using cylindrical co-ordinates.
In this study, the sound "eld inside the cylindrical shell and the e!ects of internal sound "eld
on the structural vibration and the outer sound "eld are not considered. For cylindrical
shell structures, this might be acceptable when the shell is excited mechanically and the #uid
inside the cylindrical shell is light, such as air. The surface normal displacement of each
vibration mode has the form uJ

mnr
(h, z, t)"u

mnr
c
m
(z) cos (nh!/

r
) e+ut in the region 0(z(l,

and zero outside this region, where u
mnr

is the modal amplitude in the radial (r) direction for
mode (m, n), and /

r
is a constant associated with the phase angle. Here the mode shape in

the axial direction c
m
(z) depends on the boundary conditions at z"0 and l. Note that

generally the vibration and corresponding acoustic solutions in the two orthogonal
directions (z and h) can be treated separately and that the vibration displacement of
a circular cylindrical shell in the circumferential direction (h) always takes the cosine form.
Then by transforming c

m
(z) to the wavenumber domain [14, 18] we have

C
m
(k

z
)"P

l

0

c
m
(z) e+kzzdz, (5)

where C
m
(k

z
) and uJ

mnr
(z, h, t) satisfy

uJ
mnr

(z, h, t)"
e +utu

mnr
2n P

=

~=

C
m
(k

z
)e~+kzz dk

z
cos (nh!/

r
). (6)

These two equations indicate that the "nite vibration distribution can be decomposed into
a number of waves propagating along an in"nite length cylindrical shell with di!erent
wavenumbers and di!erent amplitudes and phases. Therefore, the present problem is
reduced to that of the sound radiation from an in"nite length cylindrical shell with the
vibration displacements of the form u

mnr
C

m
(k

z
) e~+kzz cos (nh!/

r
). Associated with each

vibration component, the sound pressure produced in the free "eld is [14]
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and the corresponding acoustic particle velocity is
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( ) ) is Hankel function of the second kind, o

0
is the density of air,

and A is a constant. By applying the boundary condition at the interface, the sound pressure
for mode (m, n) in the wavenumber domain on the surface of the cylindrical shell can be
expressed as [18]
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By transforming equation (9) back to the time domain, the sound pressure produced by the
vibration mode (m, n) on the vibrating surface can be obtained:
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Then the acoustic power radiated by this vibration mode is found as
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By taking the integration over z "rst, equation (11) can be further reduced to

=
mn

(u)"
1

4n
Re CP

=

~=

!ju3o
0
u2
mnr

k
r

H (2)
n

(k
r
a)

dH (2)
n

(k
r
a)/d(k

r
a)

DC
m
(k

z
) D2dk

zD
]C P

2n

0

cos2 (nh!/
r
)a dhD . (12)

Since in practice the sound power is expected to be real, by using the relationship
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From equation (13), it can be seen that if the mode shapes in the axial direction (which
depends on the boundary conditions) are known, the corresponding acoustic power
radiated by each vibration mode can be predicted.

From the assumed vibration displacement for the vibrating surface, the averaged mean-
square velocity for mode (m, n) can be determined from
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where S is the surface area of the "nite length cylindrical shell. By using the de"nition of
modal radiation e$ciency [14], the modal radiation e$ciency of "nite length cylindrical
shells can be found as
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Hence, in order to calculate the modal radiation e$ciency according to equation (15), the
mode shapes in the axial direction have to be determined. Note that in reference [15], it has
been shown that the mode shapes of cylindrical shells in the axial direction can be
determined with good approximations by using the beam function. Equation (15) can be
e!ectively employed to calculate the modal radiation e$ciencies of a "nite length
cylindrical shell. As equation (15) involves the ratio of two integrals, it is unlikely that
a simple expression like that for in"nite cylindrical shells can be obtained. However, for
cylindrical shells simply supported at two ends, the mode shapes in the axial direction are
given exactly by [1]

c
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mnz
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By using this equation, C
m
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z
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By substituting equations (16) and (17) into equation (15), we have
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Generally, equations (15) and (18) have to be solved numerically to provide information
on the basic properties of the modal radiation e$ciency of "nite length cylindrical
shells.
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3.2. MODAL AVERAGED RADIATION EFFICIENCY

Although the modal radiation e$ciency of "nite length cylindrical shells has been
obtained above, it should be noted that in practice, it is the modal-averaged radiation
e$ciency rather than modal radiation e$ciency that can be directly measured. Generally, to
obtain the modal-averaged radiation e$ciency, one has to work out the vibration
distribution on the structure. According to Soedel [20], if the distributed loads on the
cylindrical shell in the three directions are assumed as F

z
e+ut, Fhe+ut, F

r
e+ut (N/m2), the

steady state harmonic vibration response of mode (m, n) in the radial direction is given by
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where
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For every m, n combination, there are three natural frequencies u
mni

(i"1, 2, 3)
corresponding to the three vibration modes (longitudinal, torsional, and #exural); f

mni
is the

corresponding modal damping of the three vibration modes, and;
mnzi

,;
mnhi ,;mnri

are the
mode components of the longitudinal, torsional, and #exural vibrations of the cylindrical
shell respectively (see reference [20] for details). Normally, these mode shapes have the
forms
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where a
m
(z), b

m
(z), and c

m
(z) are the mode shapes of the three vibrations along the axial

direction (z) of the cylindrical shell, A
mni

/C
mni

, and B
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/C
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are the coupling ratios
between the longitudinal and #exural vibrations, and between the torsional and #exural
vibrations, respectively, as given by Soedel [20]. For simply supported ends, a

m
(z), b

m
(z),

and c
m
(z) have exact solutions as [20]
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For other boundary conditions, a
m
(z), b

m
(z), and c

m
(z) can be approximately obtained from

a longitudinally vibrating beam, and a transversely vibrating beam of the same
corresponding boundary conditions respectively [20]. For example, the mode shapes of
#exural vibration for free}free ends are [21]
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and those for clamped}clamped ends are
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It has been shown in reference [15] that the exact relationships between the natural
frequencies and the wavenumbers for the three vibrations are independent of the boundary
conditions, and therefore so are the coupling ratios. For all the boundary conditions, the
coupling ratios obtained from simply supported conditions (see reference [20] for details)
can be directly used by substituting the appropriate natural frequencies.

If only F
r
exists, although vibrations in the three directions would be excited, the #exural

vibration would dominate the vibration response (i"3). By using the de"nition of modal-
averaged radiation e$ciency [14], the modal-averaged e$ciency of the cylindrical shell can
be obtained from
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(22)

With equation (22), the modal-averaged radiation e$ciencies of the steel circular cylindrical
shells discussed in section 2.1 are calculated and compared with the BEM results (Figure 1)
in Figures 5 and 1(b). In the BEM calculation, the modal damping was set as 0)001. It can be
seen that for simply supported, and free}free conditions, the results obtained from equation
(22) and BEM agree reasonably well. For the clamped}clamped condition, at low
frequencies the curve obtained by equation (22) is shifted slightly to higher frequencies. This
is because the natural frequencies predicted by using the beam function are higher than the
numerical results [15]. Nevertheless, Figures 5 and 1(b) indicate that equation (22) can
predict the modal-averaged radiation e$ciency of circular cylindrical shells with reasonable
accuracy.

According to equation (22), the contribution of each vibration mode to the response
depends on the external excitation. In principle, therefore, di!erent modal-averaged
radiation e$ciencies would be expected depending on the type of excitation (such as
mechanical excitation or acoustic excitation), the distribution of the excitation forces (such
as point force or surface force), and the positions of the application of the excitation. It
seems, therefore, impossible to obtain a unique modal-averaged radiation e$ciency for
a given cylindrical shell. However, if all the vibration modes are excited in a strcuture, at
each natural frequency, the vibration response is usually dominated by the vibration mode
corresponding to this frequency. Thus, the modal-averaged radiation e$ciency at u"u

mn
may be approximated by the value of the modal radiation e$ciency of mode (m, n) at
u"u

mn
, as

pN Du/umn
Kp

mn
(u

mn
). (23)
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Since equation (23) is only valid at each natural frequency, it can be expected that the larger
the separation between the two adjacent natural frequencies, the more information will be
lost in that region. Therefore, the accuracy of equation (23) would improve if the modal
density is high. By using equations (15), (21) and (23), the modal-averaged radiation
e$ciencies of the cylindrical shell model with three di!erent boundary conditions are
calculated at each natural frequency and plotted in Figures 5(a)}(c). It can be seen that
except at low frequencies, say below 4000 Hz, where the number of vibration modes is less,
Figure 5. (a) Modal averaged radiation e$ciency of a simply supported cylindrical shell: a"63)5mm,
h"1)6 mm, l"200 mm;** BEM results; ) ) ) ) ) ) ) ) Equation (22); # equation (23). (b) Modal averaged radiation
e$ciency of a clamped}clamped cylindrical shell: a"63)5mm, h"1)6 mm, l"200 mm; ** BEM results;
. . . . . . . . equation (22); # equation (23). (c) Modal averaged radiation e$ciency of a free}free cylindrical shell:
a"63)5mm, h"1)6 mm, l"200 mm; ** BEM results; ) ) ) ) ) ) ) ) equation (22); # equation (23).
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the results obtained by equation (23) are good approximations. However, if the structure is
excited coincidentally so that only one vibration mode exists in a wide frequency range,
equation (23) may incur some errors because the assumption that each mode would
dominate the response at its natural frequency is no valid here. In this case, the modal-
averaged radiation e$ciency (p6 (u)) would be equal to the modal radiation e$ciency
(p

mn
(u)). Therefore, the accuracy of equation (23) also depends on the number of vibration

modes excited in the structure.

4. EXPERIMENT

In order to verify the above analytical and BEM results, an experiment was carried out in
an anechoic room. The geometry of the cylindrical shell is the same as that in the simulation
shown in Figure 1(a). Only a shell with both ends free was tested. As shown in Figure 6, the
shell was excited by a B&K-type 4810 shaker driven by a B&K 2706 power ampli"er. The
excitation signal used was random noise from 0 to 6)4 kHz which was provided by
a HP3569A dual channel analyzer. The acoustic power output from the shell was measured
by scanning a sound intensity probe over the cylindrical shell. The sound intensity probe
comprised two 1

2
in microphones separated by 12mm, thus giving an acceptable frequency

range from 125Hz to 5 Hz. The sound power was determined from the sound intensity
spectra obtained with HP3569A and the scanned area. The vibration spectra at 70 points
distributed uniformly on the shell were also measured using a B&K-type 2635 charge
ampli"er and a B&K-type 4383 accelerometer. All these vibration data were recorded by
HP3569A and further processed to give the spatial-averaged mean-square vibration
velocity over the shell. From the measured sound power and the spatial-averaged mean-
square vibration velocity, the measured radiation e$ciency spectrum is determined and
plotted in Figure 7. It can be seen that the experimental results agree fairly well with the
analytical and BEM results.



Figure 6. Schematic diagram of experimental set-up for measuring the sound radiation e$ciency of a cylindrical
shell: Charge ampli"er, B&K 2635; power ampli"er, B&K 2707; Shaker, B&K 4810; Accelerometer, B&K 4383.

Figure 7. Comparison of the measured radiation e$ciency with BEM and analytical calculations: **
measurement; L BEM, # equation (22).
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5. CONCLUSIONS

A literature review on the acoustic radiation of "nite length circular cylindrical shells has
revealed that the radiation characteristics are not well understood for acoustically thick
shells ( f

r
/f

c
'1) as for acoustically thin shells ( f

r
/ f

c
(1). Analysis of acoustically thick

shells has shown that unlike #at plates, for frequencies below the critical frequency, both
supersonic and subsonic modes can exist. Consequently, the radiation e$ciency is
dependent on the geometries and boundary conditions and could reach unity at a frequency
much lower than the critical frequency.

The modal radiation e$ciency of a "nite length circular cylindrical shell loaded with
a light #uid has been derived using an in"nite length model with vibration velocity
distributed over a "nite length. An approximate method introduced to calculate the
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modal-averaged radiation e$ciency based on the modal radiation e$ciency has produced
results in good agreement with boundary element calculations for simply supported,
free}free and clamped}clamped boundary conditions, and with the experimental results for
the free}free boundary conditions.
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